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o ABSTRACT

Measurements of the spectral content of - and X-band radar
reflections from several resolution cells containing wind-blown
trees are examined under a wide variety of typical wind
conditions. Most of tne discernible energy (i.e., within 60 dB
of the peak zero-Doppler level) occurs in the spectra at Doppler
velocities usually less than 1.0 m/s, or at most 2.0 m/s on very
windy days. The rates of decay of energy with increasing Doppler
velocity in the tails of the spectral distributions at spectral
off-sets well removed from zero often appear to be approximately
exponential. Estimates of rates of exponential decay in the
spectral tails as a function of windspeed are provided in three
regimes of windspeed.
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1. INTRODUCTION

During the period of time from late 1984 to mid-1985, radar

T A AL IR YN

ground retlections from hilly tree-covered terrain were measured

>

v

on a nominal once-a-week basis from Katahdin Hill in eastern
Massachusett:. These retflections were measured as relatively

long (e.g., 5 min) pulse sequences on sgpecific resolution cells.

The purpose of this measurement program was to establish a multi-
frequency data base from which temporal and seasonal variations

of yround clutter could be examined,

In this report, we examine the spectral content of retlec-
tions from wind-blown tree toliaye in selected cells from this
data base, over a wide variety of wind conditions. That is,
wind-induced motion of the trees causes bDoppler-shifted eneryy in
the power spectra of the received temporal signals. We
illustrate here the sorts of spectra that result trom typical

L 2OQNMIgr I G ASERL s

wind conditions as they routinely vary with weather and season.

We are interested in how wide these spectra usuaily become at the

LT
s

limits at which we can easily discern energy in their tails, and
the approximate rates of decay of eneryy with increasing Doppler
velocity in these tails well removed from zero-Doppler velccity.
Most of the spectral data presented are at L-band, althouyh a few
examples of X-band spectra are also presented. Two of the X-band
examples are trom sites other than Katahdin Hill. Some brief
multifrequency information on temporal autocorrelation properties
ot radar returns from wind-blown trees is included to complement

the spectral data.
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2., CLUTTER MEASUREMENTS AT KATAHDIN HILL

For the purpose of uotaining a set of temporal ground
clutter measurements, our mobile five-frequency‘ground clutter
neasurement radar was set up on Katahdin Hill at Lincoln
Laboratory. Lincoln Lavoratory is located on Hanscom Air Force
Base in Lexinygton, Massachusetts. We reter to this radar as
Phase One, to distinguish it from an earlier, X-band only,
clutter measurement radar which we call Phase Zero. The Phase
One radar 1is a modern, computer controlled, pulsed instrumenta-
tion radar with high data rate recording capability (i.,e., linear
receiver with 13 bit A/D converters in I and Q channels), and
malntains coherence and stability sutficient for 60 dsi two-
pulse-canceler clutter attenuation in post-processing. The Phase
One antenna heams are tixed at zero deyrees in elevation, and are
steerable in azimuth. The Phase One waveform is uncoded. A
photograph cof the Phase One eyuipment set up on Katahdin Hill is
shown in Figure 1. Important Phase One measurement parameters

are shown in Table 1.

In these temporal measurements, lony time dwells of
backscatter data were recorded from a number ot contiguous range
Jates in a fixed azimuth beam position looking out to the
southwest (i.e., 235°) rrom Katahdin Hill across hilly wooded
terrain in the suburban town of Lincoln. Lincoln is located 12
mirles northwest ot doston. The Phase une L-band antenna mast
height on Katahdin Hill was 94'3". We refer to each lonj time
dwell of contijuous pulses as a data collection experiment,
Experiments were usually collected one day per week from March
through June, 14985, and at less frequent intervals before (i.e.,
late November/early December, 1984) and after (i.e., early Auyust
1985) this time. 1In much of the L-band data discussed in this

report, experiments consisted of 30,720 contigyuous pulses
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FIG., 1. PHASE ONE EQUIPMENT AT KATAHDIN HILL, MASS. Camera
viewingy direction is northwest. Antenna tower is
erected to 95 teet.
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TABLE 1

PHASE ONE SYSTEM PARAMETERS®

htiitarh  ARKARAAL SIS LS

t REQUENCY
BAND VHE UMK  L-BAND  3-BANL  X-BAND
MHz 169 435 1230 3230 9100
POLARIZATION VV OR HH
! RESOLUTION
;q RANGE 15, 36, 150m
P AZIMUTH 13° 5e 3° 1° 1°
g ELEVATLON BEAMWIDTH  39° 16 10° 4° e )
55 PEAX POWEHN 10 kw (50 kW AT X-BAND)
:2 10 km SENSITIVITY a°F" = -60 au
E A/D SAMPLING RATE 1, 2, S, OR 10 Mtz
)y A/D NUMBER OF BITS 13
:: DATA RECORDING RATE 625K BYTES/SEC
h? OUTPUT DATA I and ¢
3 RCS ACCURACY 2 a8 rms
e MINIMUM RANGE 1 km
33 DYNAHIC RANGE
;: INSTANTANEOUS 60 dis
ATTENUATOR CONTROLLED 40 dB
DATA COLLECTION MODES HEAM SCAN
PARKED BEAM
g\ BEAM STEP
gg AZIMUTH SCAN RATE 0 TO 2 DEG/SEC
TOWER HEIGHT 95!

*The specific trequencies and tower height employed at Katahcin
Hill are listed here; the other measurement parameters were used
at all sites.
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collected over a 5 minute interval at a 1V ms pulse repetition
interval. Occasionally, the data were collected faster (see
Table 2, p. 24). Un each data collection day, the recordiny
seguence involved collecting long time dwell experiments both
trom forested clutter cells at 235° azimuth, as well as from a
cell at 68.5° azimuth containing a large water tower as a system
reference taryet, across our tilve Phase Une tfreguency bands. The
period of time over which we conducted these experiments spanned
winter, sprinyg, and summer seasons., During this period 1in
eastern Massachusetts, deciduous trees begin to show the
emergyence of new leaves in early May, and are essentially fully
leaved out by the end of May.

FPhace One L-band range resolution may be selected to be
either 150 m (i.e., 1.0 ps) or 15 m (i.e., 0.1 ). 1In each
experiment with ranye resolution set to 150 m, we recorded data
from 16 contiguous ranje yates located from 1.5 km to 3.9 km 1n
range trom Phase One. 1In each experiment with range resolution
set to 15 m, we recorded data from 76 contiygyuous ranye gates
located rtrom 2.0 km to 3.1 km. For the results presented in this
report, we emphasize 15 m data taken from the ranyge gate between
2756 m and 2771 m, and 150 m data taken from the range yate
between 2786 and 2936 m. Both of these ranye gates lie on the
south side ot Jupiter Ridye, where the terrain abruptly drops 100
teet in elevation over a distance of ahout 500 feet (i.e.,
approximately 11° terrain slope). This south face of the ridye
is directly visible from Phase One at c¢Lliqgue incidence. Thus
Juplter Ridge produced strony ground clutter for Phase One, at
L-band ¢° levels of petween -17 and -23 dB, where ¢ represents
radar cross section per unit area in the resolution cell,

Jupiter Ridge is tree covered, poimarily with mixed deciduous
trees (e.g., oak, maple, beech, birch, locust), but with

occasional pine and cedar as well, all to an apgroximate height




of 60 or 70 feet. Jupiter Ridyge is settled with occasional
suburban houses located within the trees and back from the front
of the ridge. However, at the low depression angle of about
0.65° at which the ridye was viewed from the Phase One antenna,
it was essentially solid tree foliage that was under direct
illumination along the relatively steeply dropping front faze ot
the ridgye. Three photographs of the terrain along Jupiter Ridge
are shown in Figure 2. For the computations of clutter spectra
presented in this report, we carefully selected cells from along
the ridge with strong signal-to-noise ratio, and in which the
measured temporally varying clutter amplitude statistics were
close to Rayleigh distributed, to ensure that only tree foliage

was under illumination and that there were no strong stationary

discrete scatterers in the cells as would be indicated by

hﬁ strongly Ricean amplitude statistics,

]

gé Our tocus of interest 1s 1in the sorts of yeneral spectral
variation that can occur under wind conditions broadly character-

p izable as strony (1.e., "windy"), moderate (i.e., "breezy"), or

ﬁé light (i.e., "light air"). We took our measure of wind condi-

55 tions trom the weather information continuously beinyg broadcast

from Hanscom airfield, 1-1/2 miles from our principal clutter

cells. We believe this information to be a reasconable indication
of general free-space wind conditions in the neighborhood in
which we conducted our measurements. For every experiment, we
recorded mean windspeed and wind direction as they were being
broadcast at that time, as well as ygust velocity when conditions
were Justy. When possible, we attempted to select a relatively

windy day during the week as our clutter measurement day.

Figure 3 shows a 1:40,000 scale aerial photoyraph of the
terrain surroundinys in which we conducted our Katahdin Hill
measurements. The Fhase one position on Katahdin Hill, Jupiter
fidyge, and Hanscom airfield are all indicated in this air photo,

as are Route 128, RrRoute 2, and Lincoln Laboratory.
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a) Looking southwest up the side of Jupiter Ridge from across
a plowed field

FIG. 2. PHOTOGRAPHS OF JUPITER RIDGE TERRAIN,

Continued, ..




Continued...

PHOTOGRAPHS OF JUPITER RIDGE TERRAIN.

2.

Looking upslope from the bottom of Jupiter Ridge

FIG.

b)
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c) Trees atop Jupiter Ridge

FIG. 2, PHOTOGRAPHS OF JUPITER RIDGE TERRAIN.

Concluded.
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AERIAL PHOTOGRAPH OF KATAHDIN HILL MEASUREMENT AREA. -
Scale = 1:40,000. The numbered circles are: Phase
One position_on Xatahdin Hill; 235° azimuth from
Phase One; Jupiter Ridge; (4) Hanscom Fjield;
Lincoln Laboratory; Route 128; and Route 2.
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3. CLUTTER SPECTRA

Prior to the Katahdin Hill measurement proyram, which
provided the L-band spectral intormation which is the main
subject of 1nterest in this present report, the Phase One
equipment was involved in making measurements at many sites,
primarily in western Canada. Early spectral investigations of
these data were conducted at X-band. 1In Section 3.1, we present
some of these early spectral X-band data from two difterent
Canadian sites, Neepawa, Manitoba, and Wokinyg, Alberta, as well
as more receit X-band spectral data trom Katahdin Hill, This
allows us to bring into consideration from the outset and show
how our thinking evolved as we observed in these early results
the effect of windspeed on spectral width and approximate
exporential decay of spectral tails. It also allows us to
brcaden our Katahdin H1ll L-band data to another frequency and
other sites. The results sugygest that there is no stronyg
frequency dependency in power spectra from wind-blown foliagez
between L-band and X-band (beyond the basic Doppler dependency
which is linear with frequency), and thet the Katahdin Hill data
are not particularly specific to site or tree type. In Sections
3.2 and 3.3 we go on and discuss our much more comprehensive
L-band spectral data base frow Katahdin Hill.

3.1 Preliminary X-sBand Results

In our earlliest computations ot clutter spectra from wind-
blown trees, it was apparent that windspeed was of dominant
intluence on spectral width, and that treguently the rate of
decay of the spectrum with increasinyg Doppler velocity in the
tail of the spectrum was approximatly exponential. Figure 4
shows two examples of early spectral result:s obtained trom Phase
One X~band measurements at two sites in western Canada. Both of
these measurements were conducted from cells containing deciduous

aspen trees in winter season when the trees were bare of leaves.
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FIG. 4

POWER SPECTRUM (dB)

0 1 | L T |

WINDSPEED = 15 KNOTS. NEEPAWA
SITE. PATCH OF ASPEN ON CROPLAND I
ON THE SIDE OF A 2° RISING
ESCARPMENT, DEPRESSION ANGLE
=-1.3°, LATE WINTER/EARLY
SPRING (16 MARCH 1982, 346 pm.)
RANGE = 6.549 km. AZIMUTH = 297°

10 |

X-BAND
-20 - —
, A
i
! l‘
"
] LR VAN
-30 = , y -
WINDSPEED = 3 KNOTS
WOKING SITE. DENSE
ASPEN FOREST. DEPRESSION
40 ANGLE=023". LATE FALL’ -
EARLY WINTER (3 Nov 1983.
948 am) RANGE - 6 3 km,
AZIMUTH =127
50~ ELE_A_'Q —
1 1 | 1 1
0 10 20 30
DOPPLER FREQUENCY (Hz)
L | | | 1 |
0 01 02 03 04 05

DOPPLER VELOCITY (m/s)

POWER SPECTRA OF X-BAND RADAR RETURNS FROM WIND-BLOWN

TREES, MEASURED AT TWO CANADIAN'SITE‘.S.
Range res. = 150 m, pol. = vertical, 7680 samplgs,
pri = 8 ms, record duracion = 1.024 min, 512 point FFT,

Blackman-Harris window.
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Otherwise these two sites were quite different and far removed
from one another, Woking being a densely forested site in
northern Alberta, whereas Neepawa was a farmland site in southern
Manitoba. These early spectral data from Canadian sites were
obtained by first computing the autocorrelation function over the
full 1.024 min duration of the temporal record (i.e., 7680 pulses
with pulse repetition interval = 8 ms), and subsequently
computing the power spectrum as the Fourier transform of the
autocorrelation function.'! 1In Figure 4, what we mean by
approximate exponential spectral decay is illustrated by the
straight-line approximation drawn through the Neepawa data.
Exponential decay of clutter spectra from wind-blown trees has
been observed previously.2 In the Woking data of Figure 4, of
considerably lower windspeed than the Neepawa c¢ata, the spectrum
is considerably narrower and an exponential approximation is

somewhat less valid.

Figure 5 shows two examples of X-band spectral results from
a forested cell at Katahdin Hill measured on two different days,
17 April 1935 and 25 April 1985. The cell measured, at 2582 m to
2597 m range and at 235° azimuth, lies on the south side of
Jupiter Ridge, but at slightly closer range than the cells for
which we show L-band data in Section 3.2. On 17 April the winds
were quite strong; at the time cf this X-band experiment,
windspeed was recorded to be 10 knots gusting to 20 knots. 1In
contrast, 25 April was a very still day and the winds were

recorded as "calm" at the time of our experiment.

The spectra of Ficure 5 are computed directly as Fast
Fourier Transforms (FFT's) of the temporal pulse-by-pulse return
including the dc component calibrated in RCS units of a2, The
spectral content is displayed in decibels with respect to 1 m 2
(i.e., in dBsm). The method used in generating these spectra is

the method of modified periodograms,3 where the temporal record

13




FIG.

S

RCS (dBsm)

]llrllTlTl—Illljl LR LB

FORESTED CELL RADAR PARAMETERS
(o 2582 m, 235° RANGE RES. =16 m =
POL = HORIZONTAL
PRI=2msg
17 APRIL 1985
10 kn, 340°
-20f GUSTS TO 20 kn \ _

CALM DAY
25 APRIL 1985

b
(=)

-2 -1 o 1 2
DOPPLER VELOCITY (m/s)

POWER SPECTRA OF X-BAND RADAR RETURNS FROM WIND-BLOWN
TREES, MEASURED FROM KATAHDIH HILL, MASS., ON A WINDY
DAY AND ON A CALM DAY. 30,720 gamples, pri = 2 ms,
record duration = 1.024 min, 1024 point FFT,
Blackman-Harris window.
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of 30,720 pulses is divided into contiguous groups of 1024
samples, a 1024 point complex FFT is generated for each group,
and the amplitudes of the resultant set of FFT's are
arithmetically averaged together in each Doppler cell to provide
the spectrum illustrated. Thus, in Figure 5, each spectrum shown
is the result of averaging 30 individual spectra from an overall
RCS record of 1.024 min duration and 2 ms pulse repetition
interval (pri). In the generation of each spectrum, a 4-sample
Blackman~Harris window or weighting function is utilized, with
highest sidelobe level at ~74 d8 and with -6 dB per octave
falloff." A1l of the L-band spectral results in Section 3.2 are
computed similarly. Appendix A illustrates this process of

computation of spectra wmuch more thoroughly.

The results in Figure 5 illustrate the differences in
spectral content of the X-band reflections from this cell between
when the tree branches are relatively motionless and when they
are undergoing relatively strong, wind-induced, random motion.

I+ is graphically apparent in these results how much of the dc or
zero-Doppler return on the calm day is converted to ac return
distributed over Doppler velocities up to 2 m/s on the windy

day. The windy day spectrum shown in Figure 5 is one of the

widest spectra we have so far found in our clutter data base. As
in the Neepawa data of Figure 4, again we observe in this windy
day Katahdin Hill data that the rate of decay of spectral energy
with increasing Doppler velocity in the tail of the spectrum is
approximately exponential as indicated by the straight line drawn
through the left side of the spectrum. The exponential
approximation is slightly less valid on the right side of this
spectrum. The Phage One system noise levels are evident in both

the calm and windy day results of Figure 5 at a level of about

-64 dBsm. It 1s evident that on the windy day there is

15




essentially no observable eneryy above this noise floor for
Dopplier velocities greater than about 2 m/s. A physical velocity
of 2 m/s would seem reasonable to attribute as a near-maximum
velocity to expect for components of tree branches that might be
acting as scattering centers causing direct phase modulation at
our X-band RF wavelength =»f 1.3 inches under windy conditions.

However, we made no measurements of tree wotion,

The calm day spectrum in Figyure 5 is one of the narrowest
spectra we have so far found in our clutter data base. In
contrast to the windy day spectrum of Figure 5, which is somewhat
wider but at least comparable to the Neepawa data of Figure ¢4,
the calm day spectrum of Figure 5 is much narrower than the
Woking data of Figure 4, Although very narrow, this calm day
spectrum is slightly wider than the corresponding X-band spectrum
from our water tower r2ference target measured on the same day,
indicating that there 1s some slight motion of the tree branches
even on this very calm day. 1In this reyard, we mention that
during actual Phase One data collection, where we have a live
instantaneous A-scope showing the returns beiny recorded, we have
noticed that the display of X-band returns from forested cells,
although usually exhibitinyg rapidly varying dynamic scintilla-
tion, very infreguently and only under the stillest air
conditions does occasionally settlie down and become almost
stationary. Together, then, the two spectra illustrated in
Figure 5 may be thouynt ot as representing extreme or boundlny
conditions on X-band spectral extent from wind-blown trees, at
least as determined by the Phase One data thus far examined.

In following discussions, we expand on these preliminary
X-band observations trom Figures 4 and 5, as tollows:
a) higher windspeed causes wider spectra (even when wind-
speed 1s just yrossliy applicable to the general

neighborhood and not measured specifically in the treed
clutter cell);

16
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b) approximate exponential decay of spectral tails;

c) exponential approximation better for higher windspeeds
and wider spectra;

d) gross similarity in spectra from site-to-site and
between X- and L-band,

3.2. L-Band Results from Katahdin Hill

As was mentioned in section 2, for system reference data on
each clutter measurement day, we recorded long time dwell
experiments on a cell containing a larye cylindrical municipal
water tower, Figure 6 shows the power spectrum computed from the
water tower L-band returns that were measured on the relatively
calm day of 15 May. As expected, most of the eneryy from this
stationary tower is at zero-Doppler velocity. The slight
spectral spreading just above noise level in these data is
attributable to ground clutter (i.,e., trees) in the same cell at
the base of the water tower. In other L-band measurements of
this same water tower on windier days, the spectral width 55 to
65 dB below the peak increases to as much as + 0.15 m/s to + 0.4
m/s, respectively. The theoretical spectral response ot
Blackman-Harris weighting of a corstant signal is also shown in
Figure 6. It is clear from Figure 6 that we are limited in
providing measured 1024-point FFT clutter spectra by the Phase
One system noise level rather than by the theoretical window
function response. It is also clear, however, that our Phase One
system maintains the theoretical Blackman-Harris spectral
resolution over more than 50 dB of dynamic range. The data of
Figyure 6 detine the instrumentation and processing limitations in

the L-band spectral data presented subsequently.

With our system limits established, we now 4o on and show
L-band clutter spectra from wind-blown trees. Similarly as we
did 1n Figuie 5 for X-band data, Figyure 7 shows two examples of

L-band spectra from wind-blown trees on a day c¢f light winds and
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POWER SPECTRUM OF L-BAND RADAR RETURNS FROM A WATER
TOWER, MEASURED FROM KATAHDIN HILL. 6144 samples,

pri = 10 ms, record duration = 1,024 min, 1024 point

FFT, Blackman-Harris window.
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DATE: 11 JUNE 1985
CELL: 27566 m, 236°
WIND: 7kn, 280°

RADAR PARAMETERS
RANGE RES.=16m

POL. = VERTICAL -
PRI = 10 ms
L-8AND

RCS (dBsm)

DOPPLER VELOCITY (m/sl

a)

PUWER SPECTRA OF L-BAND RADAR RETURNS FROM WIND-BLOWN
TREES, MEASURED FROM KATAHDIN HILL ON A DAY QOF a) LIGHT
WINDS = 7kn AND ON A DAY OF b) STRUNG WINDS = 17 kn,
30,720 samples, pri = 10 ms, record duration = 5,120
min, 1024 point F¥T, Blackman-Harris window.

Continued...
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mir, 1u24 peint ¥¢T, #lackman-Harris window,

Concluded.
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on a day of strong winds. Note that these two results in
Figure 7 are from different cells, although both lie aloang tha
gsouth side of Jupiter Ridygye at 235° azimuth. Further note that
the abscissa scales differ by a factor of two. 1In contrast to

the X-bard calm day spectrum of Figure 5, the L-band light wind
spectral data of Figure 7(a) do not apply to absolutely still air

conditions. Theretore the épectral extent is greater in the
light-wind L-band spectrum of Figure 7 than in the calm day
X-band spectrum of Figure S. Nevertheless, as in the X-band data
of Fiygure 5, we continue to see in the L-band data of Figure 7
that spectral extent increases significantly with windspeed.
Furthermore, we continue to observe in the L-band data cof

Figure ° that tne rate of decay of spectral eneryy with

increasinrg bDoppler velocity is approximately exponential. As
before at X-band in Figures 4 and 5, we illustrate what we mean
by approximately exponential by straight-line fits drawn through
the right sides of the L-band spaectra in Figure 7. As in the
X-band data, the fir is very good for the stronyg winds data of

43 LBl ax . |

Figure 7(b) and not as yood for the light winds data of

Figure 7(a).

I

The spectrum shown in Figure 7(b) is the widest L-bana
spectrum that we have tound so far in our measurement data base.
It is interesting to observe that cur widest examples of very
windy day X- and L-band spectra in Figures 5 and 7(b) are very
similar, even though these measurements apply to different days
and different cells. Both of them are well-approximated bv expo-
nential tali-offs tnat decay at nearly equal rates with increas-
ing Doppler velocity until the minimum discernible energy above
the system noise level in the measurement is reached, which in

each case occurs at a maximum Doppler velocity of about 1.8 or

2.0 m/s. On the basis of these widest windy day spectra shown in
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Figures 5 and 7(b), there does not appear to be any marked
dependence with RF frequency on spectral shape or extent on windy
days. The data in Figure 7(b) are described in much greater

detail in Appendix A.

We now go on from discussicons of individual spectra to

consideration of many spectra grouped within broad categories of
windspeed. Before we consider these groups of spectral data, we

pause to clarify our focus of interest in this regard. As

mentioned previously, we did not measure windspeed in the clutter )
cell. Neither did we make any effort to record tree motion
(e.q., via movies). It is not that we lack interest in these
matters, but that the ground truth tail can quickly begin wagging
the radar measurement dog. In the end, our interest is in how

spectral widening can influence radar system performance, not in
the random motion of trees in winds. 1In fact, if our interest
were directly in the latter, we could think of no more useful i
device to investigate the phenomenon than Doppler radar measure-
ments. Rather than a deterministic association between directly
observed windspeed, tree motion, and recorded spectrum, we are
more interested in the range of spectra that occur under broad
nominal assessment of general wind conditions at a gross overall
level of information such as might be available for a typical

radar operating in the field. For such a radar, continuous

detailed information on wind condition in every clutter cell can
never be available, even if we were to devise a spectral model

e

based on such information. Thus, our Hanscom airfield wind con-

)

dition information serves our interests very well in providing a
general indication of free-space wind conditions in the neighbor-
hood of our clutter cells. This information allows us to follow

our line of interest and see the extent of variation that occurs

el AT

in clutter spectra within groups of similar wind conditions, ancd

the separation cf the spectral data between such groups.

~
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Table 2 lists parameters of 23 iong time dwell L-band
experiments in which backscatter from Jupiter Ridge forested
clutter cells was measured at Katahdin Hill during the period of
time from November 1984 to Augusi 1985. These 13 experiments are
ordered in three yroups by nominal wina condition, as a) light
air (5 to 8 kn), b) breezy (10 to 11 kn), and c¢) windy (15 to
25 kn). Our wind terminology is not that of the meteorological
Beaufort scale. Thus, for us "light air" covers Beaufort light-
to-yentle breezes, "breezy" covers Beaufort gentle-to-moderate
breezes, and "windy" covers Beaufort moderate-to-strony breezes.

Figure 8 shows L-band power spectra for the 23 experiments
listed in Table 2, ordered within the same three groups by
nominal wind condition (viz., light air, breezy, or windy) as are
shown in Table 2. 1In Figure 8, the number in the key to the
upper right in each part of the figure is the spectrum number in
Table 2. We observe in Figure 8 that there is reasonably good
clustering within the three ygroups of results by windspeed, and
reasonably good separation between the three groups. As would be
expected when using the Hanscom broadcast information as a
general indication of wind conditions in the Phase One neighbor-
hood, within the three groups of spectra there are a few examples
when the local wind conditions in the clutter cell itself did not
appear to match the wind conditions being broadcast during the 5
minute interval when the measurement data were beinyg acquirea,
Thus, for example, under the nominal breezy conditions of
Figy. 8(b), spectrum number 2 and, to a lesser extent, spectrum
number 6, are narrower than the rest of the spectra in the
group. And under the nominal windy conditions of Fig. 8(c),
spectrum number 7 is narrower and spectrum number 4 is wider than
the rest of the spectra in the ygroup. Except for these few

examples, the remainder ot the spectra in Fig. 8 cluster
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TWENTY-THREEZ TEMPORAL RECORDS OF L-BAND REPLECTIONS PROM WIND-BLOWN TRERS

TABLE 2,

Measurement Rangs Polar- Pulee windspeed Hind Rain
Spectrua Date and Resclution Lization Repetition Mean Peak Direction (R)
Number Time-of-Day Interval Guet
(himin) (m)t (me) tt {xn) (kn) (deq)
Light Adir (5 to 8 kn)
9 May 85 11,09 15 v 10 6 280
22 May 85 13:39 15 v 10 6 10
22 May 85 13:5 1) H 10 6 10
S Jun 85 14:00 15 v 10 [} 100 R
S Jun B85 14:16 150 v 10 8 100 R
11 Jun 85 10:41 15 v 0 ? 270
1% Jun 85 t10:52 150 [} 10 ? 270
11 Jun 85 11101 15 H 10 7 270
12 Aug 85 15:05 15 v 10 5 290
12 Aug BS 16:45 15 v 10 e 320
to 11 kn)
30 Nov 84 1101 15 v 2 10 a0
30 Nov 84 13:40 15 v 8 10 280
10 Apr 8% 11:26 150 H 2 11 280
15 May 85 14:57 15 v 10 10 260
29 May B85 16:48 15 v 10 10 110
19 Jun BS 16127 1% v 10 10 3go
3 7 Dec B4 10:44 15 H 2 15 310
L) 4 Apr 8BS 10124 150 H 2 10 20 310
5 4 Apr 85 15:18 15 H 10 10 20 290
7 17 Apr B8S 14:12 150 H 10 15 25 350
8 17 Apr BS 16:36 15 v 10 15 25 30
9 3 May 85 11:07 15 v 10 17 80 R
10 3 May 35 14:31 15 H 10 15 70 R

t Azimuth was 235%

2786 w.

tt In every case (except spectrum #2), 30 successive 1024 point complex PFT's were

the 15 o call started at 2756 & rame,

computed and averaged, covering dwells of 1.024 and 5,120 min at 2 and 10 ms pri,
Por spectrum #2, 10 successive 1024 point FFT's were computed and

\ respectively.

averaged ovor a 1,365 min dwell.

iR
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17
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20
22
23
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1
2
6
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FIG. 8 POWER SPECTRA OF L-BAND RADAR RETURNS FROM WIND-BLOWN
TREES, MEASURED FROM KATAHDIN HILL FUR a) LIGHT AIR
DAYS, b) BREEZY DAYS AND c) WINDY DAYS. See Table 2.
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TREES, MEASURED FROM KATAHDIN HILL FOR a) LIGHT AIR
DAYS, b) BREEZY DAYS AND c) WINDY DAYS. See Table 2.
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FI1G. 8 POWER SPECTRA OF L-BAND RADAR RETURNS FROM WIND-BLOWN
TREES, MEASURED FROM KATAHDIN HILL FOR a) LIGHT AIR
DAYS, b) BREEZY DAYS AND c) WINDY DAYS. Gee Table 2.
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remarkably tightly in three ygroups by nominal neighborhood wind-
speed. The three groups ot results in Figure 8 may be regarded
as beiny indicative of probability of occurrence of spectrail
width of radar returns from cells containing wind-blown trees for
radars operating in torest ground clutter, in three broad regimes
of general windspeed in the neighborhocod of the radar.

In absolute terms, the spectral widths in all three groups
are narrow, with most of the discernible energy occurring at
Doppler velocities usually less than 1.0 m/s or at most 2.0 m/s,
Such narrow spectral extents are commensurate with what might be
expected from direct phase modulation of the radar returns by the
physical velocities of individual wind-driven tree elements.

Also, except for the few examples mentioned above, there is
good separation betwz2en the three groups of results in Figure 8.
For example, if we consider the -40 dysm level in tne spectra and
neglect the few examples just mentioned, we observe that at this
level the light air spectra in t'iyg. 8(a) have Doppler velocities
between ¢.35 and 0.65 m/s, tne breezy day spectra in Fig. 8(b)
have Doppler velocities between V.65 and 1.0 m/s, and the windy
day spectra in tig. 8(c) have Doppler velocities between 0.9 and
1.2 m/s, Or, if we consider the -20 dssmm level in the spectra,
we observe that at this level the light air spectra have Doppler
velocities between 0.1 and 0.35 m/s, the breezy day spectra have
Doppler velocities between 0.35 and 0.45 m/s, and the windy day
spectra have Doppler velocities between (0.4 and 0.6 m/s.

Except for this correlation of spectral width with nominal
neighborhood windspeed, there appear to be no strong trends with
other measurement parameters in the spectral results of
Figure 8. That is, such ground truth parameters as time-of-year
(i.e., leaves on or off), prevailing wind direction, or whether
there was rain in the neighborhood during the measurement, all
have little observable effect on spectral shape. Similarly,

whether the polarization of the radar was vertical or horizontal




also has little observable etfect in the measured spectra. The
range resolution of the radar does affect the dc level of the
measured spectra, in that the 150 m pulse has larger zero-Dopgler
RCS levels in the results of Figure 8; but beyond this expected
result (viz., largyer cells have greater RCS) there 1is little
observable eftect on the spectral shape at non-zero Doppler
velocities. The shorter dwell times of experiments with

pri < 10 ms do lead to less spectral resolution, as is theoreti=~
cally required, which careful examination of the results in

Figure 8 does reveal,

We now select one representative spectrum from each of the
three groups in Figure 8. That is, from within the central
region of each group where most of the data clusters toyether, we
select the single spectrum which appears to most closely exist at
the center of the cluster over its full spectral extent. These
"most representative" spectra are spectra numbers 18, 12, and 10
in Table 2, for light air, breezy, and windy conditions, respec-
tively. These three spectra are plotted together in Figure 9,
and clearly illustrate the eftect ot windspeed on spectral
extent, Also plotted in figure 9 are the thinnest L-band
spectrum we have tound so tar in our data base {(viz., spectrum
number 16, Table 2), and the widest L-band spectrum we have found
so tar in our data base (viz., the spectrum of Fiy. 7(b), for the
2411 m range cell). 1In terms of probability of occurrence, these
latter two results may be thought of as approximations to
limiting situations for spectral extent of radar returns from
cells containing wind~blown trees, whereas the former three
results may be thouyht of as representative of typical situations
in three regimes ot windspeed. Altogether, FKigure 9 constitutes
the beginning of a model, although it shows data by individual
example only, whereas a general model is better it based on
statistical combination of many similar measurements, Note that

the dc component has been removed from the spectra shown in
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FIVE POWER SPECTRA OF L-BAND RADAR RETURNS FROM WIND-
BLOWN TREES, MEASURED FROM KATAHDIN HILL, SHOWING THE
RANGE OF VARIATION OCCURRING IN SPECTRAL WIDTH WITH
DIFFERENT WIND CONDITIONS. The spectra labelled
“"tihinnest”, "light air", "breezy", and "windy" are
spectra numbers 16, 18, 12 and 10, respectively, in
Table 2. The spectrum labelled "widest" is that shown
in Fig. 7(b). The dc component is removed in these
data.




Figure 9 in order to facilitate the comparison of data from the

different range cells.

3.3 Exponential Model

We have observed earlier in this report that the rates of
decay of spectral energy with increasing Doppler velocity in
radar returns from wind-blown trees are often reasonably well
approximated as exponential in the tails of the spectral distri-
butions well removed from the zero-boppler region. That is, the
rates of decay in the spectral tails are often fairly linear as
plotted in our standard logarithmic power (y-axis) versus linear
Doppler velocity (x-axis) spectral plots, especially for the
wider spectra that occur at higher windspeeds. However, in many
cases, especially for narrower spectra that occur at lower wind-
speeds, 1f a slight degree of curvature is allowed in approxi-
mating spectral decay in our standard plots, a slightly better
power-law fit can be obtained, in which the energyy decays slight-
ly less rapidly (never more rapidly) than exponential., We
believe this reflects the fact that nature does not always obey
some simple analytic law in this matter., Rather, we would expect
that the distributions of radial velocities of blowing branches
acting to directly phase modulate radar returns to be very
complexly related to wind conditions and tree species. In any
event, in the cases where spectral decay is less rapid than expo-
nential, the degyree ot departure from exponential is usually
rather slight and different from case to case. For our purposes,
it is more useful to deal with the approximatinyg exponential
representaion for the simplicity, uniformity, and yenerality it
introduces.

Therefecre, we now set out to gain the ¢ vious general
modeliny benefit of haviny observed freyuent yuasi-exponential

decay in the tails of spectra from wind-blown trees. To do sO we




proceed as follows. In the tail region of the power spectrum
where the exponential approximation is valid, we represent the
spectrum as

A e—B'Vl y Vv > 0.2 m/s,

P(v) =
where
P = power spectral density (w/HzZ);
v = Doppler velocity (m/s);
B = exponential decay factor;
A = arbitrary constant,

For each ot the 23 experiments for which measurement parameters
are shown in Table 2, the best exponential approximation to the
spectral tail is determined, and the corresponding decay factor ¢
is noted. Then these 23 values of 8 are separated into three
groups by windspeed as are shown in Table 2, and the mean g
ithin each group determined. The resulting values of 8 and
corresponding rates of exponential decay of spectral tails in
three regimes of windspeed are shown in Table 3 and Figure 10.
As is indicated in Figure 10, these exponential decay factors
apply only in the tail regions of spectra for Doppler velocities
v> 0.2 m/s, well removed from zero-Doppler velocity. The
spectral modeling information of rigure 10 has the advantage of
statistical generality, obtained by averayiny over a number of

like-classified measurements.

Let us briefly review our modeliny position with respect to
the information shown in Table 3 and Figure 10, We are
interested in Doppler spectra of radar returns from wind-blown
trees, and particularly the rates of decay in the tails of such
spectra at spectral otfsets well removed trom zero. We believe
that the information of Table 3 and Fiyure 10 is reasonably
representative of our measurements. However, we do not make a

strony case here tor the advancement of a rigorous exponential
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TABLE 3

EXPONENTIAL DECAY FACTORSt IN THE TAILStt OF L~BAND SPECTRA
FROM WIND-BLOWN TREES IN THREE REGIMES OF WINDSPEED

Exponential

Windspeed Decay Factor, 8
Light air (5 to 8 kn) 23.5
Breezy (10 to 11 kn) 17.5
Windy (15 to 25 kn) 10.7

<

' ’

t plv) = ae” Bl

where P(v) = power spectrum (w/Hz),
v = Doppler velocity (m/s),
8 = exponential decay factor
A = arbitrary constant

tt v >0.2 m/s,.
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model for spectral oxtent from wind-blown trees. We certainly do
not propose that such a model apply over the full spectrum
including the zero-Doppler region, or that even in the tails of
spectra it has statistical validity in the sense cf passing
rigorous hypothesis testing. In the face of any particular
concerr. with fidelity of spectral detail, we prefer to quickly
come away from the approximating information of Table 3 and
Figure 10, and let the actual data such as are shown in Figure 8
stand on their own, to be modeled as any investigator so wishes,
But for those, like us, who wish simple approximating information
on rates of spectral decay from wind-blown trees as a tunction ot
windspeed, we believe tnée information of Table 3 and Figure 10
usefully represents what we have often yenerally observed in our

measurements,
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4. TEVMPORAL CORRELATION

In theoretical terms, knowledge of the spectral character-
istics of some random process in the frequency domain is equiva-
lent to knowledge of the correlation characteristics of the
process in the time domain. That is, the power spectrum is
simply the Fourier transform of the autocorrelation function.
Even in practical terms, it is always broadly observable that the
wider the spectrum, the faster the process decorrelates.

However, in analyzing our measured clutter data, neither the
power spectrum nor the autocorrelation function are exactly and
completely describable in simple analytic form easily amenable to

Fourier transformation., As a result, if we are interested in
both spectral and correlative properties, we need to numerically
generate both the power spectrum and the autocorrelation func-
tion. In Section 4.1 we provide some examples from our Phase
One Katahdin Hill measurements of radar returns from wind-blown
trees showing how correlation time varies with RF frequency and
with windspeed. 1In Section 4.2 we relate spectral width to
correlation time in one of these measurements. 1In all of the
measured results in Section 4, the dc component has been removed

from the received time-varying RC3 record.

4.1 Dependence on RF Prequency and Windspeed

Let us concern ourselves with the guestion of how long it
takes for radar returns from wind-blown trees to decorrelate,
which is complementary to the question of spectral extent in such
returns. To provide information on this subject, we investigated
the temporal correlation properties in some of the long time
dwell Phase One Katahdin Hill experiments described in
Section 2. Thus Figure 11 shows the normalized autocorrelation
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NORMALIZED AUTOCORRELATION FUNCTION

FIG.
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0125 0.26 0375 0.50
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* Not simultaneocus measuremants by
frequency band

11

AUTOCORRELATION FUNCTIONS OF RADAR RETURNS FROM
WIND-BLOWN TREES, MEASURED FROM KATAHDIN HILL ON A
WINDY DAY AT FIVE RADAR FREQUENTIES. Mcasurement day,
17 April 1985. wWindspeed = 15 kn gusting to 25 kn.
Pange = 2.5 km, azimuth = 235°. Range res. = 150 m,
pol. = horizontal. Pri = 2, 106, 10, 6, 2 ms and record
duration = 1,02, 5.12, 5.12, 3.07, 1.02 min at VHF,
UHF, L-, S-, X-bands, respectively. 1In all cases, no.
of pulses = 30,720,
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azimuth = 235°, as measured on the windy day of 17 April 1985
(see Table 2). The time-of-day (hr:min) at which data collection
commenced for each of these five experiments was as follows:
X-band, 10:24; S-band, 11:30; L-band, 14:12, VHF, 15:00; UHF,
15:27. Each of these five experiments consisted of 30,720 pulses
at pri‘'s of 2 ms, 10 ms, 10 ms, 6 ms, and 2 ms for VHF, UHF, L-,
S-, and X~bands, respectively. For all five experiments, the
polarization was horizontal and the range resolution was 150 m,
At each of the five Phase OUne freguencies, the autocorrelation of
the return from the water tower reference target remains essen-
tially at unity over the 0.5 s time lag shown in Figure 1ll. Let
us define correlaticn times /e and /2 as the times

required for the normalized correlation function to decrease to
l/e (=0.368) or 1/2 (=0.5), respectively. Then Table 4 ygives
these measures of time required for decorrelation of the radar
returns from wind-blown trees, as determined from the data shown

in Figure 11, 1If the scattering centers and their wmotion were

TABLE 4
CORRELATION TIMES FOR RADAR RETURNS FROM WIND-BLOWN TREES
AT KATAHDIN HILL ON A WINDY DAY.
(See Fig. 11)
FREQUENCY CORRELATIUN TIME (s)
BAND "1/2 /e
VHF 4.01* 5.04*
UHF 0.69 0.94
L-Band 0.67 V.95
S-Band 0.062 0.081 .
X-Band 0.033 0.049
Note: * = extrapolated estimate
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the same at all five frequencies, simple Doppler considerations
would lead us to expect that correlation times would decrease
inversely with RF frequency, all else beiny equal, We certainly

observe an approximate trend indicative of an effect in this

direction in the data of Figure 11 and Table 4, although the
results do not scale exactly linearly with freguency. This
reflects the facts that: a) the experiments were conducted at
different times and thus under different specific wind conditions
orn 17 April; b) the cell sizes and hence scattering center
ensembles were ditferent (e.g.,, due to azimuth beamwidth varyingy
with t.equency band, see Table 1); and c) the scattering centers
and their velocities would be expected to vary with RF wavelength

(i.e., twiys at X-band, pranches at L-band, limbs at VHI).

The correlative properties of radar returns from wind-blown
trees shown in Figure 11 ana Table 4 apply for the particularly
windy day of 17 April. Correlation times from wind-blown trees
would be expected to increase with decreasiny windspeed.

Figure 12 shows the normalized autocorrelation function'® for the
L-band returns from the Jupiter Ridgje forested cell, measured on
three different days under three quite different wind

conditions., The autocorrelation function is here shown only over
the correlation interval from 1,0 to 0.9 to emphasize the region
where the data just begins to decorrelate. In Figure 12, the
windy day was 17 April (i.e., the same data as is shown in Fiygure
11), the bhreezy day was 10 April, and the light air day was 5
June (see Table 2). Time of measurement (hr:min) for these three
experiments was 14:12, 11:26, and 14516, respectively. Each of
these three experiments consisted of 30,720 pulses at pri's of
10, 2, and 10 ms tor the windy day, breezy day, and liyht air

day, respectively. Polarization was horizontal on the windy and
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NORMALIZED AUTOCORRELATION FUNCTION

FIG.
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AUTOCORRELATION FUNCTIONS OF L-BAND RADAR RETURNS FROM
WIND-BLOWN TREES, MEASURED FROM KATAHDIN HILL FOR THREE
DIFFERENT WIND CONDITIONS. Windy day, 17 April 1985,
windspeed = 15 kn gusting tv 25 kn, pri = 10 ms,

pol. = horizontal, same data as in Fig. 11, Breezy
day, 10 April 1985, windspeed = 11 knots, pri = 2 ms,
pol. = horizontal. Light air day, 5 June 1985,

windspeed = 8 kn, pri = 10 ms, pol. = vertical. 1In all
cases, no. of pulses = 30,720, Range = 2,5 km,
azimuth = 235°, range res. = 150 m.
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breezy days, vertical on the light air day. 1In all three cases,
range resolution was 150 m, start range to the cell was 2486 m,
and azimuth was 235°., The results in Figure 12 clearly indicate
how temporal correlation in L-band radar returns from wind-blown
trees increases with decreasing windspeed, 1In these results, the
correlation times 1)/ On the windy, breezy, and light air days
were 0.95, 2.11, and 5.56 5, respectively.,

4.2 Correlation Time and Spectral Width

The main tocus of consideration in this report is on how far
out discernible energy occurs in the tails of Doppler spectra of
radar returns from wind-blown trees, and the rates ot decay of
enerdy in these tails. In Section 4 we have departed from this
focus to consider a tew examples of temporal correlative
properties in radar returns from wind-blown trees. Another use-
tul objective within this whole subject area would be to provide
modeling informavicn not only for predicting spectral width, but
also for relating spectral width to correlation time. Although
we are not at present actively involved in pursuing this objec-
tive, we now present an example along these lines to shed addi-
tional light on the information about spectral tails that is
presented in this report. We select the windy day X-band experi-
ment of Figure 11 because both its spectrum and correlation time
are well resolved and well defined in our data, and because the
rate of decay of energy in its spectral tail is well-approximated
as exponential. On the basis of the spectral results presented
in Section 3, we arbitrarily select the 40 dB below peak level in
the ac spectrum as the level at which we define spectral width,
This level is well above radar noise level, yet is well out on
the tail in the region where our exponentia! rate of decay
applies and is well removed from the zero-Doppler region where

the exponential model does not apply and where we are apt to lose
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resolution on calm days. We define the Doppler freguency at
which this level occurs in the spectrum to be f_45 Hz. For the
windy day X-band experiment of Figure 11, f_409 = 58,8 Hz, and

Tl /e = 0.U4942 s. We Kknow that, in some broaa sense, correla-
tion time is inversely proportional to spectral width, If we
assume that 13/ = K/f_4¢, for the windy day X-band experi-

ment K = 2.91. We believe it would be usetul to investigate more
fully and to have modeling information available for these three
quantities, f_40, T)/er and K, or similar quantities specify- -
ing and reflecting the relationship between spectral width and
correlation time in radar returns from wind-blown foliage. The -N
information in this report makes a beginning toward specification
of spectral width, but is not directly useful for estimating
correlation time., For example, for the hypothetical spectral
distribution which is exponential over its full extent including
the zero-Doppler reygion, K = 1.92. This hypothetical value of X
underestimates the actual correlation time in the windy day
X-band example of tigure 11. That is, the hypothetical exponen-
tial spectral distribution underestimates the low-frequency com-
ponents in the near-zero Doppler region in the spectrum. This
example brings out more clearly why we do not advocate an
exponential model over the tull extent of the spectrum but only
in the tail. It also tantalizes us as to what better and more
yeneral relationships 1n these matters miyht apply, but we lesave

these issues to future investigations.

tLet the power spectrum be represented by P(f) = % e-a'f', where
f is Doppler frequency. This provides«x__m}'“° P(£)d(f)=1. The cor-

a?

responding autocorrelation function is: R( 1) = '
a2+ (27m7) 2

where 1 1s time layg, and R(0O) = 1. Then, for this theoretical

relationship, = = 1.92/fF_

1/e 40°
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5. SUHMMARY

Lonyg ctemporal records were measured of radar backscatter
from wind-blown trees. These measurements were conducted on an ]
approximately once-a-week basis over a period of about § months '
on a few forested resolution cells, Power spectra showing the
Doppler freyguency content of these measured records were

generated.

In absolute terms, the widths of these spectra are very
narrow. The maximum Doppler velocity at which discernible energyy
appears in the spectra is often less than 1.0 m/s, and almost
always less than 2.0 m/s. By discernible, we mean to levels of
about 60 dB or so below the peak zero-voppler level and above our

system nolse level,

Over and above the fact that wind-blown tree spectra are
narrow, we definitely observe a predictable association of
spectral width with the nominal windspeed in the neigyhborhood
during cur measurements, whereby spectral widths increase with
increasing windspeed. Furthermore, we often ohserve that the
energy in the tails of the spectra, at spectral off-sets well
removed from zero, decays approximately exponentially with
increasing Doppler velocity. Estimates of rates of exponential
decay in the spectral tails as a function of windspeed are
provided in three regimes of windspeed, as: 1) light air, 5 to
8 kn; 2) breezy, 10 to 11 kn; and 3) windy, 15 to 25 kn.

On the basis of numerous observations, we see little general
dependency of spectral shape or extent on other yround truth
parameters such as prevailing wind direction or whe*her leaves
are on or off the trees, or on the radar parameters of
polarizaticon and resolution. Heither do we observe any strony
dependence of spectral shape and extent on the radar frequency
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between L-band and X-band, although this is based on a much more
limited set of observations to date.

Correlation times in our temporal records of radar returns
from wind-blown trees are expected to rary inversely with
spectral widths, but except for a few examples, this report does
not provide general information for predicting correlation times
as a function of windspeed or establishing the constants of

proportionality,
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APPENDIX A

TIME AND SPECTRAL HISTORIES FOR A LONG PULSE SEQUENCE
OF RADAR RETURNS FROM WIND-BLOWN TREES ON A WINDY DAY
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A.l INTRODUCTION

In the body of this report, we present many power Spectra
from wind-blown trees usually obtained from 30,720 pulse
sequences at a pulse repetition interval (pri) of 10 ms. These
povwer spectra are computed as the average of 30 sequential 1024
point Fast Fourier Transforms (FFT's) in which the pulses are
taken 1024 at a time until 30,720 pulses are used up. The
individual FFT's are computed as complex FFT's of sequential
intervals of the in-phase and quadrature coherent measured data
record. The averaged power spectrum is computed simply as the
arithmetic mean of the 30 contributing amplitudes in each Doppler
resolution cell. The averaged spectra shown in the body of the
report are not decomposed to show the 30 individual power spectra
which go into each one. FEach of these individual spectra is
obtained from a 10.24 s sequence of 1024 pulses. This 10.24 s
interval or dwell of time is long enough to encompass a number of
correlation periods and hence to incorporate a substantial amount
of temporal variation in the received signals (see Table 4).
However wind is a dynawic random process with complex short-term
and long-term variation. The wind conditions within a treed
resolution cell are expected to vary with local gustiness from
one 10,24 s interval to the next. Among themselves, how variable
are the 30 individual power spectra formed from 30 sequential
10.24 s dwells covering a total period of 5.12 min? 1In this
appendix, we provide an answer to this question by showing the 30
individual power spectra for one particular, wirdy day, averaged

spectrum shown in the body of this report.

The particular averaged spectrum selected is that shown in
Figure 7(b), which was generated from data measured on the windy
Jday of 3 May 1985 (see Tabhle 2). This is one of the widest
L-band spectra from wind-blown trees that we have so far founi
\ our measurement data base. 1In Sect. A.2, we first list the
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measurement parameters of this experiment., Then in Sect. A.3 we

plot time histories of amplitude (RCS per unit area, or ¢, in

dB) and phase (in deg) over their complete record lengths of .
30,720 pulses. These time histories explicitly show the detailed f
pulse-by-pulse temporal variation for which we are determining

the spectral content.

In Section A.4, we go on and show the overall spectrum
resulting from averaging the 30 individual component spectra,
Finally, in Section A.5, we seguentially show each of the
individual spectra. The dc level in the received RCS siygnal has
not been removed in any of the results shown in this Appendix.

> XA
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Site:
Date:
Cell:
Wind:

Radar

A.2 EXPERIMENT PARAMETERS

Katahdin Hill
3 May 1985
2411 m, 235°

17 kn, 80° (rain)
Parameters
Range res. =15 m
Polarization = vertical

L-Rand

Processing Parameters

Number of samples = 30,720
Pri = 10 ms
Record duration = 5,12 min
1024 point FFT's, dc in.
Blackman—-Harris window.
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A.3 RCS AMPLITUDE AND PHASE TIME HISTORIES
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PULSE-BY-PULSE OVER 30,720 PULSES.
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PULSE-BY-PULSE OVER 30,720 PULSES.
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